
Abstract—Spreading processes are strongly interacting with 

huge flow of quantitative social, demographic and behavioral 

data that may be used to improve immunization strategies. The 

existing immunization strategies are limited by their 

computational requirements and still have the problem of 

scaling in large networks. The topology of the pattern of contacts 

between individuals plays a fundamental role in determining the 

spreading patterns of epidemic processes embedding the 

mechanism of diverse infection periods and is an impact on the 

dynamical spreading process behaviors properties. An 

important challenge is to define an immunization strategy that 

identify a meaningful group (community) of nodes that are 

strongly related to the disease and who cannot catch nor 

transmit the disease. Artificial Bee Colony (ABC) is widely used 

as an optimization algorithm that performs community 

detection. To immunize intelligently, ABC asks the node related 

ontology and changes the strategy evolution consequently by 

combining many efficient strategies for each node. This paper 

presents an Ambient Intelligence (AmI) based approach that 

designs a semantic temporal network as an RDF graph and 

implements the ABC algorithm as a novel intelligent and 

immunization strategy accordingly.  
 

Index Terms— Semantic Temporal Network, ABC 

Algorithm, Intelligent Immunization Strategy, 

Community Detection.  

I. INTRODUCTION 

Kang & Fu [1] describe the effects of uniform and targeted 

immunization schemes on scale-free networks. However, 

they argue that, in reality, the spread of many epidemic 

diseases exhibits heterogeneity, in particular, small-world 

and scale-free property. Great research attentions about 

complex networks are attracted in such a way. However, 

these strategies are limited by their computational 

requirements and still have the problem of scaling in large 

networks. 

Ki & al [2] constructed diverse infection periods on a 

random mobile network, to address the influence on its 

epidemics from diverse infection periods. To explore extra 

realistic spreading process, random mobile individuals 

moving at a square plane have been considered. As different 

people may have different infection periods due to their 

different physique, they focused on random mobile 

dynamical networks with diverse infection periods due to 

people’s different constitutions and external circumstances. 

This means that each individual as a node in the network 

needs to be specified with more semantics. In addition, the 

links must provide more information.  

Yan & al [3] introduce some parameters to investigate the 

evolution of vaccinated nodes during iterations, and find that 

some nodes in the network were selected for multiple times, 

although not always continuously. As epidemic season 

continues, the selection of vaccinated individuals tends to be 

stable. Those nodes include both global hubs, who possess 

most connections, and local hubs, who are influential in their 

communities. In addition, they also present some numerical 

results of their strategy on certain real social networks. 

Consequently, the immunization strategy must select 

intelligently the best individuals. 

Starnini & al [4] investigated the structural properties of 

networks and the relative importance of their constituents but 

they did not provide any constituents knowledge. They 

consider simple disease spreading processes on empirical 

time-varying networks of contacts between individuals and 

compare the effect of several immunization strategies on 

these processes. The choice of nodes is performed according 

to a certain ranking of the nodes of the contact network. They 

consider various ranking strategies, focusing in particular on 

the role of the training window during which the nodes’ 

properties are measured in the time-varying network: longer 

training windows correspond to a larger amount of 

information collected and could be expected to result in better 

performances of the immunization strategies. They find 

instead an unexpected saturation in the efficiency of strategies 

based on nodes’ characteristics when the length of the 

training window is increased, showing that a limited amount 

of information on the contact patterns is sufficient to design 

efficient immunization strategies. This finding is balanced by 

the large variations of the contact patterns, which strongly 

alter the importance of nodes from one period to the next and 

therefore significantly limit the efficiency of any strategy 

based on an importance ranking of nodes. They also observe 

that the efficiency of strategies that include an element of 

randomness and are based on temporally local information do 

not perform as well but are largely independent on the amount 

of information available. Therefore, the efficiency of 

strategies have to perform well in any circumstances. To do 

so, ranking must be computed more realistically with 

artificial intelligence supports. 

In these previous works, the size of the networks is very 

small. Alternatively, some small cities may have more than 

100 000 citizens. Individuals’ characteristics must be 

semantically based to support complex networks that exhibit 

heterogeneity and mobility. The used strategies are typically 

data based but they, really, need to perform intelligently to 

rank nodes more realistically. Therefore, we have to consider 

big data and complex network with best-designed 

specification that require distribution and real-time 

interoperability.  

Let us conclude that the dynamics of many social, 

technological and economic phenomena are driven by 

individual human actions, turning the quantitative 

understanding of human behavior into a central question of 

modern science. These findings have led to a large modeling 

effort and stimulated the study of the impact of a network's 

dynamics on the dynamical processes taking place on top of 

it. Contacts within populations are better described in terms 

of semantic networks with a non-trivial structure that exhibits 

the fact that connections appear, disappear, or are rewired on 

various timescales, corresponding to the creation and 
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termination of relations between pairs of individuals 

including individual diversity of susceptibility and 

infectivity. Spreading processes are strongly interacting with 

huge flow of quantitative social, demographic and behavioral 

data that may be used to improve the immunization strategy. 

The topology of the pattern of contacts between individuals 

plays a fundamental role in determining the spreading 

patterns of epidemic processes embedding the mechanism of 

diverse infection periods and is an impact on the properties of 

the dynamical behaviors of the spreading process. The 

existing immunization strategies are limited by their 

computational requirements and still have the problem of 

scaling in large networks. Optimal immunization strategies 

shed light on how the role and importance of nodes depend 

on their properties and can yield importance rankings of 

nodes.  

An important challenge is to define an immunization 

strategy that identify a meaningful group of nodes 

(community) that are strongly related to the disease and who 

cannot catch nor transmit the disease. As a solution, when 

working on big data, we need to change the network topology 

to a graph that can be semantically handled. Graphical 

modeling provides many advantages and offers rich 

information in a simple readable format model (RDF). 

Especially, interaction networks have become an area of great 

interest for applying Artificial Intelligence and Data Mining 

tools to analyze, understand, extract information and 

knowledge, and finally to apply immunization strategies 

intelligently.  

Ambient Intelligence (AmI) based on constrained devices 

and their communication protocols helps handling such 

information into semantic temporal networks and spreading 

processes as RDF graphs. In addition, it addresses the sharing 

information in a semantic format through RDF graph 

(ontology) as a common virtual shared space. Communities, 

related to immunization, need to be automatically identified 

and the strategy needs to evaluate intelligently each node 

before immunizing.  

Artificial Bee Colony is widely used as an optimization 

algorithm that performs community detection. It will provide 

best performance when applied as an immunization strategy. 

As long as application developers use standard ontologies, 

different applications using the same spaces will interact 

automatically. Hence, many strategies can be applied 

simultaneously. A strategy has to collect all information 

needed to decide whether to immunize or not. A node and its 

entire links are specified as an ontology. The global graph is 

an ontology of ontologies. To immunize intelligently, the 

strategy must ask the node related ontology and changes the 

strategy evolution consequently.   

This paper presents an AmI based approach of a semantic 

temporal network. Artificial Bee Colony (ABC) algorithm is 

applied as a novel intelligent and dynamical immunization 

strategy. Contacts positions, social and environment 

information are dynamically gathered as and when applying 

any strategy. Nodes and links are designed as specific 

ontologies. ABC detects the appropriate contacts by asking 

their specific ontologies to decide to immunize the contact. 

ABC may combine more efficient strategies for each node. 

The bees decide at each node, which politic is the best.   

We hope this method is better when discovering 

communities and applying immunization strategies 

comparing with previous solutions. Data mining technologies 

can be applied as knowledge discovery tools to enhance 

ontologies.    

Finally, this paper shows the designing of temporal 

networks as RDF graph and implements the ABC algorithm 

accordingly. Section II provides related works. We describe 

the semantic temporal network as RDF graph in Section III. 

The spreading model using the ABC Algorithm as an 

immunization strategy is introduced in detail in Section IV. 

The DEVS implementation of a Tuberculosis simulation is 

presented in Sections V, respectively. This TB is fully 

detailed in (Mokaddem, in press). Finally, conclusion is 

drawn in Section VI and relevant prospect is discussed. 

II. RELATED WORK 

Dynamical networks can describe plenty of complex 

systems. A typical network comprises nodes and links, where 

the nodes represent different individuals (contacts) of a real 

system and each link represents the connection between two 

nodes. In many studied epidemic dynamical networks, their 

topological structures are often assumed to have static 

connections [5,6]. It is well known that there is great 

necessity to study the spreading mechanics and dynamical 

behaviors of epidemic diseases, which has attracted much 

attention [7].  

Kang & Fu [1] present an SIS model with delay on scale-

free networks, calculate its epidemic threshold and describe 

the effects of uniform and targeted immunization schemes. 

Initially proposed by Kermack and Mckendrick [8], SIS and 

SIR were established on homogeneous networks. However, 

in reality, the spread of many epidemic diseases exhibits 

heterogeneity, in particular, small-world and scale-free 

property. Since, great research attentions about complex 

networks are attracted by these two concepts. In fact, many 

study results have indicated that the mobility of individuals 

(inducing time-varying topological structure) can play an 

important role in the epidemic spreading process [9–10]. For 

example, the moving of individuals among cities has a great 

impact on the epidemic threshold when one of the cities has 

been infected [11, 12].  

The individual diversity of susceptibility and infectivity is 

also an important factor when addressing the spreading 

behavior on networks [11, 13]. In general, the susceptibility 

and infectivity of individuals are heterogeneous, which may 

be caused by age, sex, or other intrinsic differences. Recent 

research findings [14] have shown that the heterogeneity of 

individual susceptibility and infectivity can increase the 

epidemic threshold. By embedding the mechanism of diverse 

infection periods into a random mobile epidemic network, Li 

& al [2] investigated the epidemic dynamics affected by 

individual diversity of susceptibility and infectivity. The 

theoretical analysis results of their considered epidemic 

model show that the shorter the individual’s infection period 

is, the larger its epidemic threshold will be. Moreover, the 

epidemic threshold of the random mobile network with 

diverse infective periods is larger than the counterpart with 

the same infection period [14].  

The topology of the pattern of contacts between individuals 

plays a fundamental role in determining the spreading 



patterns of epidemic processes. The first predictions of 

classical epidemiology were based on the homogeneous 

mixing hypothesis, assuming that all individuals have the 

same chance to interact with each other. This assumption and 

its results were challenged by the empirical discovery that the 

contacts within populations are better described in terms of 

networks with a non-trivial structure. Subsequent studies 

were devoted to understand the impact of network structure 

on the properties of the spreading process. The main result 

obtained concerned the large susceptibility to epidemic 

spread shown by networks with a strongly heterogeneous 

connectivity pattern, as measured by a heavy-tailed degree 

distribution P(k) (defined as the probability distribution of 

observing one individual connected to k others) with a 

diverging second moment [15].  

The original studies considered the interaction networks as 

static entities, in which connections are frozen or evolve at a 

time scale much longer than the one of the epidemic 

processes. This static view of interaction networks hides 

however the fact that connections appear, disappear, or are 

rewired on various timescales, corresponding to the creation 

and termination of relations between pairs of individuals [16]. 

Longitudinal data have traditionally been scarce in social 

network analysis, but, thanks to recent technological 

advances, researchers are now in a position to gather data 

describing the contacts in groups of individuals at several 

temporal and spatial scales and resolutions. The empirical 

data analysis on several types of human interactions (in 

particular phone communications or physical proximity) has 

unveiled the presence of complex temporal patterns in these 

systems [16-18]. In particular, the heterogeneity and 

burstiness of the contact patterns are revealed by the study of 

the distribution of the durations of contacts between pairs of 

agents, the distribution of the total time in contact of pairs of 

agents, and the distribution of gap times between two 

consecutive interactions involving a common individual. All 

these distributions are indeed heavy-tailed (often compatible 

with power-law behaviors), which corresponds to the 

burstiness of human interactions [19].  

Current models of human dynamics, used from risk 

assessment to communications, assume that human actions 

are randomly distributed in time and thus well approximated 

by data mining and statistical processes. In contrast, an 

increasing evidence is that the timing of many human 

activities, ranging from communication to entertainment and 

work patterns, follows non-Poisson statistics, characterized 

by bursts of rapidly occurring events separated by long 

periods of inactivity. The bursty nature of human behavior is 

a consequence of a decision-based queuing process: when 

individuals execute tasks based on some perceived priority, 

the timing of the tasks will be heavy tailed, with most tasks 

being rapidly executed, whereas a few experiences very long 

waiting times. In contrast, random or priority blind execution 

is well approximated by uniform inter-event statistics. These 

finding have important implications, ranging from resource 

management to service allocation, in both communications 

and retail. They have led to a large modeling effort [20-21] 

and stimulated the study of the impact of a network's 

dynamics on the dynamical processes taking place on top of 

it. The processes studied in this context include 

synchronization [22], percolation [23], social consensus [24], 

or diffusion [25]. Epidemic-like processes have also been 

explored, both using realistic and toy models of propagation 

processes [26-28]. The study of simple schematic spreading 

processes over temporal networks helps indeed expose 

several properties of their dynamical structure: dynamical 

processes can in this context be conceived as probing tools of 

the network's temporal structure [18]. 

The study of spreading patterns on networks is naturally 

complemented by the formulation of immunization strategies 

tailored to the specific topological (and temporal) properties 

of each network and most previous literature of this field have 

focused on the selection of vaccinated nodes before the 

outbreak of an epidemic [29-32]. Optimal strategies shed 

light on how the role and importance of nodes depend on their 

properties and can yield importance rankings of nodes. In the 

case of static networks, this issue has been particularly 

stimulated by the fact that heterogeneous networks with a 

heavy-tailed degree distribution have a large susceptibility to 

epidemic processes, as represented by a vanishingly small 

epidemic threshold. In such networks, the simplest strategy 

consisting in randomly immunizing a fraction of the nodes is 

ineffective. Numerous immunization strategies have been 

proposed such as uniform immunization (nodes are 

vaccinated randomly) [29-31] or targeted immunization 

(vaccinate the most highly connected nodes) [29-31]. 

Targeted immunization is highly effective [33], but it requires 

global information about the network thus making it 

impractical in real cases. Cohen et al. proposed acquaintance 

immunization strategy [34], based on the immunization of a 

small fraction of random neighbors of randomly selected 

nodes. Its principle can be described as a node with higher 

degree is easier to be chosen from a random link. Without 

specific knowledge of the network, this method is efficient for 

networks of any broad-degree distribution and allows for a 

relatively low threshold of immunization. Besides, some 

other novel immunization strategies have been proposed in 

the last decade [31-32] and have their applications in different 

cases. More complex strategies, in which nodes with the 

largest number of connections are immunized, turn out to be 

effective but rely on the global knowledge of the network's 

topology. This issue is solved by the previous acquaintance 

immunization strategy. Few works have addressed the issue 

of the immunization strategies design and their respective 

efficiency in the case of dynamical networks [28,35-36]. 

However, many infectious diseases outbreak seasonally, 

which is not fully discussed in previous literature as far as we 

know [37-38]. The periodic change of temperature, humidity 

profiles, or even the succession of school terms and holidays, 

can lead to periodic phenomena of epidemics. Previous data 

have shown that rubella, whooping cough, and influenza 

reveal obvious seasonality [39]. Here is a simple explanation 

of epidemics with seasonal phenomena: After spreading 

extensively, a virus dies out because infected individuals have 

recovered and produced antibodies. Yet, in the next epidemic 

season, the mutated virus propagates again, rendering a new 

outbreak of the epidemic. This process then occurs 

repeatedly. Yan & al [3] propose an immunization strategy 

for seasonal epidemics to give a better description of this 

phenomenon. They merely adopt uniform immunization on 

the network at first. Before the start of the next epidemic 

season, they adjust the vaccinated nodes according to the 



infection status of their neighbors in the previous epidemic 

season. This process does not need global information of the 

network and achieves better performance than uniform and 

acquaintance immunizations under the same circumstances.  

In particular, Lee & al [35] consider datasets describing the 

contacts occurring in a population during a time interval [0, 

T]; they define and study strategies that use information from 

the interval [0,ΔT] to decide which individuals should be 

immunized in order to limit the spread during the remaining 

time [ΔT,T]. Specifically, the authors introduce two 

strategies, called Weight and Recent. In the Weight strategy, 

a fraction ƒ of nodes is selected randomly: for each of these 

nodes, his/her most frequent contact in the interval [0,ΔT] is 

immunized. In the Recent strategy, the last contact before ΔT 

of each of the randomly chosen individuals is immunized. 

Both strategies are defined in the spirit of the acquaintance 

immunization, insofar as they select nodes using only partial 

(local) information on the network. Using a large ΔT= 75%T, 

they show that these strategies perform better than random 

immunization and that this is related to the temporal 

correlations of the dynamical networks. The scenario they 

used is indeed the possibility to implement a real-time 

immunization strategy for an ongoing social event, in which 

the set of individuals to be immunized is obtained by 

strategies based on preliminary measurements up to a given 

time ΔT. The immunization problem takes thus a two-fold 

perspective: the specific rules (strategy) to implement and the 

interval of time over which preliminary data are collected. 

Obviously, a large ΔT will lead to more complete 

information, and a more satisfactory performance for most 

targeting strategies, but it incurs in the cost of a lengthy data 

collection. On the other hand, a short ΔT will be cost 

effective, but yield a smaller amount of information about the 

observed social dynamics. In order to investigate the role of 

the training window length on the efficiency of several 

immunization strategies, they considered a simple snowball 

susceptible-infected (SI) model where individuals can be 

either in the susceptible (S) state, indicating that they have not 

yet been infected, or in the infectious (I) state, meaning that 

they have been infected by the disease and can further 

propagate it to other individuals. Infected individuals do not 

recover, i.e., once they transit to the infectious state they 

remain indefinitely in it. Despite its simplicity, this model has 

indeed proven to provide interesting insights into the 

temporal structure and properties of temporal networks. They 

focused on the SI model dynamics over empirical time-

varying social networks. The considered networks describe 

time-resolved face-to-face contacts of individuals in different 

environments and were measured by the SocioPatterns 

collaboration using wearable proximity sensors 

(http://www.sociopatterns.org) [17] table 1. They considered 

SI model spread effects by immunizing a fraction of nodes, 

chosen according to different strategies based on different 

information amounts of the contact sequence. They found a 

saturation effect in the increase of the efficiency of strategies 

based on nodes characteristics when the length of the training 

window is increased. The efficiency of strategies that include 

an element of randomness and are based on temporally local 

information do not perform as well but are largely 

independent on the amount of information available.   

 

TABLE 1 

Some properties of the SocioPatterns datasets under consideration: 

number N of different individuals engaged in interactions; total duration T 

of the contact sequence, measured in intervals of length Δt =20s; average 

degree <k> (number of different contacts) and average strength <s> (total 

time spent in face-to-face interactions) of the network of contacts aggregated 

over the whole sequence; average number of interactions f at each time step. 

 

III. INTELLIGENT TEMPORAL NETWORK 

A. Temporal Network as RDF Graph 

We consider a typical network (Fig. 1) that comprises 

nodes and links, where the nodes represent different 

individuals of a real system and each link represents the 

connection between two nodes. Since the mobility of 

individuals can play an important role in the epidemic 

spreading process, we must gather such information using 

constrained devices as smartphones and sensors. From recent 

technological advances, we are now in a position to gather 

data describing the contacts in groups of individuals at several 

temporal and spatial scales and resolutions. Contacts are 

connected to the system via constrained devices such 

Smartphones with GPS and sensors. These devices 

communicate with the system in a remote invocation mode 

which is widely used in applications all over the Internet in 

SOAP or RESTful [40] approaches (Fig. 2).  Regarding 

REST, its use in resource constrained devices is a current 

trend defended by the WoT initiative [41]. WoT proposes to 

embed web servers in everyday things. These objects expose 

their capabilities following the REST principles. In this way, 

they fully integrate with the web and positions, moving, 

temperature, climate, etc. are gathered online. Many 

smartphone applications are ready to catch tracks and routes, 

which may be stored locally in an SQL Lite database or 

remotely in a NoSQL store. Every individual is related to 

many stores. 

 Health information is stored in each store where the 

contact was administered his vaccine or getting a health 

control. May be the same store, which means that he always 

reached the same Health Center (HC), or many stores if he 

has been in many health centers. Previous contact information 

such as health and social information is retrieved from his 

related stores.  

 

 

Dataset N T <k> <s> <f> 

Eswc 173 4703 50 370 6.8 

ht 113 5093 39 366 4.1 

hosp 84 20,338 30 1145 2.4 

sfhh 416 3834 54 502 27.2 

SEMEP A Health Centers SEMEP B SEMEP C SEMEP D 

Fig 1. Global Network Dispatching 

 

http://www.sociopatterns.org/


Fig. 1 shows the relation between contacts and their 

respective stores. Some contacts are stored in 4 Health 

Centers stores (HC A, HC B, HC C, HC D). A city may have 

many HCs. For example, a contact X is born in a city A where 

he is vaccinated for some vaccines in HC A and HC B of that 

city and lives now in a city B where he has a job and is 

vaccinated for many other vaccines in HC C. He has been 

admitted for some disease in a public hospital of a city D. To 

gather all this contact information, we have to connect to 

these remote stores and retrieve each related information. 

This information is retrieved as RDF triples via REST web 

services invocation and collected in a virtual shared space that 

holds the related RDF graph as an ontology.  Each data is time 

dependent that means that this data is efficient only from this 

time. A gathered position is given by a longitude L and a 

latitude l at time t. Individual routes are the sequence of 

positions visited by that individual. Routes intersections 

define contacts and links that compose a network. Route 

intersection design a pair of participating individuals which 

were in face-to-face close proximity (≈1–2m), with a 

temporal resolution of 20 s inside the radius of the designed 

area.  

We must investigate the network dynamics affected by 

individual diversity of susceptibility and infectivity that may 

be caused by individuals’ intrinsic differences that may lead 

in infections periods. To address the heterogeneous 

connectivity, we measure two important degrees τi(t) and ίi(t) 

and the state Տi(t), this state may be ‘S’, ‘I’, ‘R’ to correspond 

to a SIR model (Fig. 1, blue =’S’, red =’I’, green=’R’). Since 

it is computed dynamically, we can adopt any other model SI, 

SIS or SEIR. τi(t), ίi(t) and Տi(t) correspond to the 

contamination and the immunization degrees and the state for 

each node i.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We compute dynamically two thresholds τ(t) and ί(t), the 

disease contamination threshold and the disease 

immunization threshold. τi(t) > τ(t) means i has a strong 

contamination otherwise he has a weak contamination and 

ίi(t) < ί(t) means i has a weak immunity otherwise he has a 

strong immunity. In the case of strong contamination, the 

contamination degree of a susceptible individual is strongly 

affected and in the case of a weak contamination, it is weakly 

affected. A strong immunity means a susceptible individual 

will not be infected but his immunity degree will decrease and 

a weak immunity means a susceptible individual will be 

infected. Each disease is associated to rules that change states 

of its related individuals, its thresholds and the degrees of its 

individuals. For example, if τi(t) > τ(t) and ίi(t) < ί(t) and Տi(t) 

=’S’ then Տi(t) =’ I’. Some others rules change the thresholds 

values of τ(t) and ί(t) respectively. Some other rules compute 

the values of τi(t), ίi(t) for each node i. A full example will be 

given when applying the ABC algorithm to show how bees 

compute these parameters. These degrees are dependent of 

environmental, social and health parameters like sex, age, 

weight, climate, humidity, etc. Data Mining tools help 

discretize these parameters more efficiently. The periodic 

change of temperature, humidity profiles, or even the 

succession of school terms and holidays, can lead to periodic 

phenomena of epidemics and affect these parameters. Some 

mutated virus propagates again, rendering a new outbreak of 

the epidemic. This process then occurs repeatedly, the 

immunization strategy needs to handle this phenomenon to 

give a better description of these seasonal epidemics.  

We need to collect the network topology global knowledge 

to apply more efficient acquaintance immunization strategies. 

We consider datasets describing the contacts occurring in a 

population during a time interval [TB, TE] and a space area 

defined by a center and a radius. 
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Fig 2. DEVSServer architecture. 

 



Fig. 3. Illustration of the reachability issue and the intransitivity of temporal 
networks (more specifically a contact sequence). The times of the contacts 
between vertices A–D are indicated on the edges. Assume that, for example, 
a disease starts spreading at vertex A and spreads further as soon as a contact 
occurs. The dashed lines and vertices show this spreading process for four 
different times. The spreading will not continue further than what is indicated 
in the t = ∞ picture, i.e. D cannot get infected. However, if the spreading 
started at vertex D, the entire set of vertices would eventually be infected. 
Aggregating the edges into one static graph cannot capture this effect that 
arises from the time ordering of contacts [16]. 

Only contacts found inside these area and time interval are 

included in the temporal network. Contacts can dynamically 

reach or leave the area and the time interval. Such information 

is gathered via contacts smartphones and collected using 

REST web services deployed on the related HCs. This 

network is fully distributed over many platforms. Each 

platform builds its own subgraph. The full network is 

obtained by assembling these subgraphs into a common 

virtual space. Semantic is embedded in the RDF triples of 

each node and its links.    

Fig. 3 is extracted from the global network of Fig. 1, 

corresponding to the subnet of HC A. Fig. 4 shows the store 

topology of this datacenter.  

To apply the chosen immunization strategy, we use and 

increment the global time between Tb and Te. The time of the 

next discrete event (next move) may be used as the increment 

step. When a move occurs, we must compute the system state 

changes (individuals’ state and degrees).  

We can use a fixed step ΔT to compute the time advance. 

At each step, each bee applies rules to compute the previous 

parameters.  

In static networks, whether directed or not, if A is directly 

connected to B and B is directly connected to C, then A is 

indirectly connected to C via a path over B. However, in 

temporal networks, if the edge (A, B) is active only at a later 

point in time than the edge (B, C), then A and C are 

disconnected, as nothing can propagate from A via B to C 

(Fig. 3). Thus, the time ordering can matter a lot, and the 

timings of connections and their correlations do have effects 

that go beyond what can be captured by static networks. 

Accordingly, we focus on rules that do not ignore the 

consequences of the time and space ordering by e.g.  

projecting out the interaction times [16].   Fig. 5 is an example 

of RDF triples describing the contact ‘Abou Falak’ and some 

of his moving. The set of all RDF triples of any contact 

defines his RDF graph (his ontology). This ontology includes 

his vaccinations with dates, nurses, centers, virus related to 

that vaccination, weights, heights, type of home including 

humidity, climate, temperature, pressure, etc. All these data 

are required to compute individuals’ degrees and disease 

thresholds.  Some of these data are temporal, which means 

that they are not significant after a deadline time.  

The temporal network of concerned contacts defines the 

full intelligent temporal network.   

 

B. RDF Building Tool 

AmI applications need to integrate and coordinate 

heterogeneous data sources or service providers. The data 

applications usually exchange is diverse and application 

domain dependent. This implies that data will not be 

meaningful in other domains unless a specialized system 

converts and reinterprets them. A way to solve this problem 

is annotating the data semantically as proposed by [42]. 

Triple Space Computing (TSC) is a coordination paradigm, 

which promotes communication style and uses semantic data 

[43-45]. The way it works is simple: each application writes 

semantically annotated information in a shared space, and 

other applications or nodes can query for it and even take it  

Fig. 1 depicts 4 datacenters in the significance of Fig. 4. 

Each one is implemented as an MVC (Model-View-

Controller) application (Fig. 2.) to allow interoperability over 

REST web services. Each MVC is used as a node in the whole 

system. A node (Fig. 2.) is designed as DEVSServer simulation 

server which is fully described in [44-45]. DEVSServer 

implements the TSC paradigm by defining a Mediator, a 

Collector, and a Repository. The Mediator handle the TSC. 

When an epidemiologist connects to the system to apply an 

immunization strategy, he begins by creating the shared space 

(TSC) on his own node by calling its createTSC() primitive. 

When introducing the area and the time interval data, his own 

Mediator puts this information inside the TSC in RDF form, 

using the writeToTSC() primitive. The Mediator executes its 

constructTemporalGraph() primitive to ask the Repository to 

retrieve all concerned Mediators URLs. Once getting 

Mediators URL, the Mediator allows these Mediators to 

access its own TSC using the readFromTSC() and 

writeToTSC() primitives. Each Mediator invokes its own 

findAllContactsAroundPosition() primitive to collect its   

subgraph forwarding this to its own Collector which invokes 

its getContactInfo() and getContactRoutes() primitives to get 

information and routes of each contact in the given area and 

time interval. Finally, the temporal network is ready to use in 

the TSC. The system can now apply its selected 

immunization strategy. 

For instance, consider two epidemiologist mobile 

applications. The first one consumes information from its 

TSC on HC A using standard ontologies to link 

epidemiologists working jointly on some epidemic.  

 

Fig. 4. Store topology of HC A 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the application uses Triple Spaces, this information 

is available for the Mediators in the shared space from HC B, 

HC C, HC D nodes. The Mediators in the same party (session) 

populate dynamically the contacts moving in the case of real 

time immunization. The second epidemiologist independent 

application, which try to immunize another disease, may 

notify the first epidemiologist when the two diseases have 

common contacts moving which means that immunization 

strategies can affect each other. The second application may 

populate the first shared space by dumping information 

retrieved from its TSC [44-45].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prior to the dump, the application semantizes the 

information according to the ontology. Finally, it periodically 

looks into the space to check the contacts leaving the space 

area and remove them from the network. The interoperability 

is achieved when the second strategy, which does not support 

the first one, discovers and update automatically contacts 

moving in the first application. This is possible because both 

applications share information in common spaces.  

As was previously stated, in TSC paradigm information is 

stored in RDF. Three key concepts are important at this point: 

agents (Mediators) share information in a common space. A 

Fig. 5. A snapshot of a random contact generation with his route. 



space is identified by an URI. Therefore, all the operations in 

TSC are performed against a particular space. By default, all 

applications connect to a common standard space, but they 

can optionally choose to connect to a particular private space. 

Within a space, the information is stored in sets of triples 

called graphs. Each graph can also be identified by an URI.  

The RDF triples are the underlying concept of all the 

Semantic Web (SW) languages. Operations supported by the 

TSC paradigm attempt to add or remove graphs, as well as to 

query for graphs or for sets of triples retrieved from different 

graphs.  

TSC provides space decoupling, so applications do not 

know where the information is physically located. They just 

access the space requesting, removing and providing 

information. Therefore, the conceptual scheme the developer 

should have in mind is that multiple nodes interact through 

different spaces (represented by clouds). Each space contains 

multiple graphs (represented by temporal networks). These 

graphs are composed by a set of triples represented by nodes 

and links within each HC and corresponding to the area and 

time interval provided.  

However, AmI environments are mainly populated by 

mobile devices and sensors. These devices frequently join 

and leave the spaces and the information they hold constantly 

changes. Thus, AmI environments are highly dynamic. As a 

consequence, we decided to adopt a distributed strategy 

which locally stores, or even generates on demand, the 

information necessary to answer a query. Doing so, we ensure 

the freshness of the responses regarding the sensed data. The 

main drawback is that whenever a node is temporarily 

unavailable its contents become unavailable for the rest of the 

nodes too. However, this faithfully represents the actual state 

of the space.  

Our TSC design does this by allowing each node, no matter 

how complex or simple it is, to manage its own information. 

Besides, it establishes a communication channel with the 

space it wants to join to, i.e. with each of the nodes belonging 

to it. Queries are propagated to other nodes which previously 

joined that space (regardless of who they are at each 

moment). Possible responses are received from them using 

the same communication channel. In this scheme, each node 

actually has the sets of graphs locally allowing knowledge 

distribution strategies. 

IV. ABC COLONY AS AN IMMUNIZATION STRATEGY 

An immunization strategy is defined by the choice of the 

set V of nodes to be immunized. Different strategies 

efficiencies can be compared by measuring their τi€V(t) and 

ιi€V(t).  More precisely, for each contact sequence of duration 

T, strategies consider a space area and an initial temporal 

window [TB; TE] over which various nodes properties can be 

measured. A fraction ƒ of the nodes, chosen according to 

different possible rules, is then selected and immunized (it 

forms the set V). Finally, τi€V(t) and ιi€V(t) are computed by 

simulating the epidemiological model with and without 

immunization and averaging over starting seeds and times. 

For each selection rule, the two relevant parameters are ƒ and 

ΔT. The most popular rules are the following:    

1. Compute, for each node i, Ki, the number of 

different other individuals with whom i has been in 

contact during [TB; TE]. [4,6,16]. Sort {Ki}.  

2. Compute, for each node i, Bi, Betweenness 

centrality (Barycenter) over [TB; TE]. Sort {Bi} [4,16]. 

3. Compute, for each node i, Li, the latest contacts 

of i in  [TB; TE]. Sort {Li} [4,16,35]. 

4. Compute, for each node i, Fi, the frequency over 

[TB; TE]. The most frequent nodes in [TB; TE]. Sort {Fi} 

[4,16,35]. 

The immunization strategy can be modeled as a problem 

of community detection in interaction networks. Community 

detection is considered with great attention for pattern 

recognition in a graph and is closely related to graph 

partitioning. This detection (or partitioning) allows us to find 

the closely related groups that form the nodes to be 

immunized. To ensure a best development of automatic 

community detection algorithms, let us say that a community 

(group to be immunized) is usually defined as a part of 

network (graph) that includes a finite number of vertices 

(nodes) with similar functions or characteristics. The 

existence of communities in network is presented as groups 

of nodes with important fitness than the other nodes in the 

graph. They are the related classes with the best rules 

application in the entire graph. The identification of such 

structure is interesting from several points of view. 

During the last decade, many approaches based on physics, 

mathematics, computer science, etc. principles, have been 

proposed for studying community structures in complex 

networks. These approaches may be grouped into three 

different categories: hierarchical, optimization, and the 

Swarm Intelligence.  

The first one is based on hierarchical methods that aim to 

use a tree of communities, called dendrogram. Communities 

merging or partitioning are performed according to similarity 

function or distance. The most important characteristic is the 

nature of the distance or similarity function. To obtain the 

optimal partition, a cut in the dendrogram must be provided. 

Newman and Girvan [46-47] introduced the most famous 

algorithm in this category. The applied method is a 

hierarchical division of community based on pulling out 

network links iteratively. Deleted links are selected using 

Betweenness measures [47]. Quick Method version based on 

the same strategy is described in [48]. An agglomerative 

hierarchical method for clustering large linked networks is 

proposed in [49]. It is used to identify stable or natural cluster. 

In this same family, another algorithm [50] identifies such 

communities. Based on the concept of edge-clustering 

coefficient, this algorithm is a divisive hierarchical method 

which works similarly as the one proposed in [46].     

The second category considers an optimization function to 

estimate the quality of partition. Once again, the method of 

Newman is applied to determine the optimal partition [47]. 

The common algorithm of this category considers three steps: 

first, it proposes several partitions of the network (randomly 

or by following a function), secondly it retains the best one 

according to the quality measure. Finally, this partition is 

refined in order to get a better quality. The optimization of 

this general form algorithm is specified by several algorithms 

described in [51-52]. Fast Unfolding Algorithm (FUA) is 

explained in [53], Label Propagation Algorithm (LPA) in  

[54], and hub-based algorithms in (Costa, 2004) [55].  

The last family contains different nature inspired 

approaches. These approaches use the ant-based algorithms 



(ABA) for community detection [56-60]. ABA is based on 

the mechanism of the ant colony. Some other approaches are 

based on Genetic Algorithms [61-62] where a GA algorithm 

uses a fitness function as the previous similarity function. As 

a survey, more comprehensive and detailed proposed 

approaches are presented by Fortunato [63].  

Also based on nature-inspired ideas, the last few decades 

have witnessed the introduction of several optimization 

algorithms [64-66]. Most of them are meta-heuristic 

techniques and generally considered as multipurpose 

optimization algorithms due to their applicability to a wide 

range of problems. In a similar context, Artificial Bee Colony 

algorithm (ABC) was initially published by Karaboga [67]. 

ABC simulates the intelligent behavior of the real honeybees. 

Based on population optimization, ABC seems to be very 

simple. The colony of artificial bees contains three groups of 

bees: employed bees, onlooker bees and scout bees [67]. The 

employed bees comprise half of the colony while the other 

half consists of the onlookers and scouts. The food sources 

detection cycle of the ABC algorithm consists of three special 

rules (three different behaviors): sending the employed bees 

to find food source and evaluate its quality of nectar; the 

onlooker bees choose food sources from employed bees 

based on a probability (employees dance) and then try to 

improve its quality of nectar; the scout bees determine 

potential new food source to place it instead of the abandoned 

solution. 

The probability for a food source to be selected increases 

with the increase of its quality. Therefore, the food source 

with the highest quality of nectar has more chance of being 

selected. The position of a food source means a promising 

solution of the problem, while the quality of the food source 

nectar represents the fitness cost associated to that solution 

[67]. 

Prior to algorithm description, some basic principles and 

terminology on partitions are useful. 

A. Basic Principles 

Consider a graph G, G = (V, E) with | V | = n vertices and 

| E | = m edges. Let P = {V1, V2, ... Vp} be a partition of V 

into p classes. Each Vi may be a group of nodes to be 

immunized according to one of the previous rules. Most of 

the works cited above take as input a graph G whose vertices 

V are people and edges E are the observed relationships 

(disease characteristics) between these people. The result of 

this work is a partition P of the graph G so that each individual 

belongs to a community that is the nodes to be immunized 

according to a specific strategy. The retained immunization 

strategy will be the best solution.  

B. Schema principle of the algorithm 

We are interested in identifying rules to detect existing 

communities when partitioning the network (graph). The 

population consists of bees looking for an optimal 

partitioning of the graph. The general outline of such ABC 

community detection algorithm is as follow:  

1) Step 1 - Initialization and generation of solutions : 

First, ABC parameters and solutions initialization are very 

important for quick convergence of the ABC algorithm. In 

this step, we define all necessary parameters such as the 

number of bees in the hive, the number of visits allowed to a 

source of food (the number of iteration to improve the 

solution), the total number of the algorithm cycles, the 

number of employed bees, onlookers and scouts, finally the 

maximum number of communities. This is completed by the 

generation of a primer solution of each employed bee. The 

algorithm proposes a solution for each chosen rule. This 

solution, presented as vector of nodes, affects each node with 

its degrees (contamination and immunity) to a community. 

An example of 4 rules means 4 communities. Proposed 

solution is accepted or rejected according to the connection 

between nodes, which could lead to a bad solution. In such 

case, this bad solution means that we do not know how 

infection occurred between nodes of the same community. 

Yet, to fit our objectives, a better generation phase is required. 

Two nodes in a same community must have at least one direct 

or transitive connection (infection occurred between nodes). 

After randomly identifying communities to nodes, we choose 

some nodes and give their identifiers to nodes that are their 

infected, it is a way to avoid bad solutions, and after each 

generation of solutions, a verification process is performed to 

check whether the solutions are acceptable, otherwise new 

solutions are generated to replace the bad solutions. The 

initialization and verification process guided the ABC 

algorithm to avoid a beginning with uninteresting partitions 

of graph; this will give a quick convergence because the space 

of possible solution is promising from the beginning and will 

eliminate unnecessary iterations. So, at the end of this step, 

the ABC has an initial population randomly distributed to find 

the optimal solution and the number of cycles is initialized as 

C=0. 

2) Step 2: Move the employed bees (local search ) 

We consider the first half of the colony as employed bees. 

In this step, each solution is treated as a food source for the 

employed bee to explore. Employed bees calculate the quality 

of their solutions using the contamination and immunization 

thresholds, and then they propose changes to improve these 

solutions. Next, each employed bee produces new solution in 

the neighborhood of its solution, taking into account local 

information of the vector solution. The production of 

solutions in the surrounding area of the original solution lead 

to a better local search (may give a better partition of the 

graph). At the end, the bee calculates the quality of the new 

solution (the rule of the new proposed partition). In case the 

new quality is higher than the previous one, the bee 

memorizes the new position and forgets the old one. 

Otherwise, the bee always keeps the position of the previous 

solution in its memory and increments the number of visits. 

In case the number of visit reaches its maximum, the 

employed bee of this solution becomes scout and proposes a 

random solution.  

3) Step 3: Selection and improvement (global search) 

After all employed bees have completed the process of 

improving local solutions; they share this information with 

onlookers in a place called the dance area. Onlookers bees 

evaluate the information of all solutions of the employed bees 

and choose one source of food (solution) with a probability 

related to its quality. As in the case of employed bees, each 

onlooker bee produces a modification to the selected solution 

and checks its quality. After that, the bee keeps in its memory 

the solution with higher quality. 



4)  Step 4: Moving the scouts 

In ABC, the solution that cannot be improved by a 

predetermined number of visits by the employed bees is 

considered as an abandoned solution. The predetermined 

value of the number of visits is an important parameter. If the 

employed bee uses all visits to the solution and this solution 

did not improve, this solution becomes an abandoned one. 

Finally, this solution is replaced by a new solution and the 

employed bees become scouts (scout offers a new random 

solution following the steps of the initialization phase). This 

is simulated by generating a new random position and 

replacing the abandoned one. Scout bee discovers a new food 

source when exploring other locations. After the 

generalization of the solution, the bee evaluates its quality. 

In a strong search algorithm, exploration and exploitation 

process must be carried out simultaneously. In the ABC 

algorithm, employed bees and onlookers perform the 

operation of search process; the scouts control the exploration 

process. The performance of the local search depends in the 

ABC algorithm of the neighborhood searches and the 

mechanisms of the greedy selection made by employed bees 

and onlookers. The performance of the global search depends 

on random search process performed by scouts’ bees. 

C. Main Steps Of The ABC Algorithm 

1. Load the data set and initialize the parameters  

2. Generate the initial solutions 

 For each solution 

    Check the existence of efficient connection 

              in the proposed partitioning. 

   If there is a bad generation solution  

           Then propose a new solution instead. 

3. Evaluate the quality of all solutions using the rules. 

4. Repeat 

1. Employed bees phase 

For each employed bee  

Produce a change in the ni solution  

Calculate the modularity of this new solution 

Apply the greedy selection mechanism.  

2. Calculate the probability pi of the value of each 

solution. 

3. Onlookers bees phase 

For each onlooker bee 

Choose a food source depending on pi of employed bee  

Produce a new food solution from the one that has been 

chosen 

Calculates the value according to the rule function. 

Apply the greedy selection mechanism. 

4. Scouts bees phase 

If there is an abandoned solution by an employed bee 

Then replace it with a new solution generated 

randomly  

5. Save the best solution. 

6. Cycle C = C +1. 

5. Until the maximum number of cycle is reached. 

Fig. 6: ABC Pseudo code for community detection. 

V.  DEVS SPECIFICATION OF THE IMMUNIZATION STRATEGY 

As previously stated (fig. 1), four SEMEPs and an HC are 

interconnected, each one has its own DEVSServer node and 

let’s say that the HC is the main DEVSServer node (Mokaddem 

and al., in press).  Simulation is initiated at the main node. 

The User Interface (UI) starts the UI DEVS model which 

initiates the simulation. The UI model takes as inputs (X) 

such that: 

X = {TB, TE, Radius, InitialPosition, EpidemyName, Start, 

Stop}. 

TB: Simulation start time. 

TE: Simulation end time. 

Radius: the radius of the area to simulate the immunization. 

InitialPosition: the position (the center) of the area where 

the epidemic is propagated.  

EpidemicName: the simulated epidemy. 

Start: start the simulation. 

Stop: stop the simulation. 

The UI executes its DeltaExt() function that performs : 

− DeltaExt(TB, TE, Radius, InitialPosition, EpidemyName, 

Start): 

1. write information into its TSC. 

2. ask the repository for the related nodes URI. 

3. write nodes URI into the TSC. 

4. invoke each node to pick its information. 

5. invoke each node to start simulation 

− DeltaExt(TB, TE, Radius, InitialPosition, EpidemyName, 

Stop): 

1. ask each node to stop its simulation. 

2. ask each node to report results into the global TSC. 

The DeltaInt() function of the UI, checks if new results 

have been generated by nodes. This generation is provided 

by the temporal network updates or the ABC algorithm 

computation. Each time a generation or a contact 

computation occurs, the related node reports this as an 

internal event. When immunizing, these internal events 

become related to ABC (bees) computation.         

The Out() function of the UI reports results from TSC to 

screen to have real-time results. 

On each node, the selected epidemic DEVS model (e.g. TB 

model) performs two tasks, the real-time updates of the 

temporal network (network dynamic) and the ABC execution 

(moves of the bees). 

The Tuberculosis characteristics and attributes (dataset) 

are described in (Mokaddem and al, in press) (fig. 5). These 

attributes are: weight, age, smoking, alcoholism, HIV, 

corticoid therapy, previous TB, itinerancy, physical activity, 

IDU (Injecting Drug User), chronic stress, diabetes, cancer, 

social level, malnutrition, immunity degree, contamination 

degree, and state.    

A. Dynamic of the Temporal Network 

Some of these variables moves slowly such as age, weight, 

etc. and others moves more quickly such as physical 

activities, social level, etc.  the generation is closely related.  

Some contacts enter the area and are then added to the 

network others instantly leave the area and the network. 

1) TB attributes generation : 

The TB generator model is continuously generating data 

until the end of the simulation. The main role of this model is 

to update temporal network data.  

Each contact model has its own generator.    



B.   ABC DEVS Representation 

When invoked to start: 

1. write information into its local TSC. 

2. load the local temporal net according to parameters.  

3. for each contact in its local temporal net do;  

1. start its parameters Generator DEVS model 

2. start the contact DEVS model. 

4. start the ABC DEVS model 

. When invoked to stop: 

1. for each contact into its local temporal net do: 

1. stop Generator 

2. stop Contact  

2. ask ABC to stop. 

 

VI. CONCLUSION 

DSS (Disease Surveillance Systems) with Epidemic 

Modeling deal with a large number of contacts moving 

dynamically and temporally. Each contact is using AmI 

devices to join/disjoin the distributed structure dynamically 

at run time. Therefore, we need to use a middleware such as  
DEVSServer that adapts itself to AmI environments and 

provides a distributed simulation among different types of 

nodes in a dynamic way.  

In this paper, we proposed a new algorithm for community 

detection based on the ABC and DEVSServer principles, which 

seeks to optimize the modularity of the network. The main 

contribution of this study is the introduction of the ABC to the 

problem of the community detecting that does not require any 

information on the number of communities in the network. 

The detection of the community in complex networks is an NP 

-hard problem. The ABC algorithm is often an effective way 

to solve these problems, each bee is trying to spread its 

solution using a process that maximizes the immunity degree 

locally through different types of groups and contamination.  

Our proposal is superior to traditional approaches of the state 

of art since it acts over large scale network and provide a 

distribution of the ABC algorithm. 

The temporal network generation and dynamic updates 

process is still hard since it requires local distributed 

multiprocessors architectures or a DEVSServer cloud 

implementation.  

Next to that, exploring and optimization of the network is 

now a partial operation. In future work, we will improve these 

two aspects. Firstly, we will improve the exploring procedure 

in order to make it more sensitive than before. Then we will 

also create a more powerful strategy of optimization by adding 

some new manipulations rather than transferring nodes in 

communities. Finally, we also intend to apply the ABC 

algorithm to several real-world diseases networks that have an 

overlapping community to interpret their significant 

structures. 

Also, a new concept and ideas for a distributed simulation 

is implemented using DEVSServer DEVSServer principles (TSC 

paradigm, Mediator, Collector, and Repository). This can 

achieve immunization strategies configuration and execution 

more powerfully. 

 The considered immunization strategies style at the Web 

level (RWS) allows take advantage of DEVSServer as new 

Web-based features or technologies. On the other hand, 
DEVSServer provides better interoperability applying RWS 

principles among the TSC paradigm. 

We aim to consider implementing the visualization process 

with its web interface. A real-time simulation with on-line 

data under AmI assistance to show the ABC algorithm over 
DEVSServer ability to a wide range of interaction and pursue 

its intelligent interoperability aspect is to be considered. We 

hope choosing testbed of volunteers’ people to validate this 

ability.  

We also consider integration in the immunization 

strategies of other contacts states such as ‘Ill’, ‘Under 

Treatment’, ‘Recovered’ and ‘Healthy’ so that ‘Ill’ recovers 

soon, ‘Under treatment’ does not relapse nor abundant his 

treatment, and ‘Recovery’ does not relapse. Such proposals 

are related to Artificial Intelligence and are part of actual AmI 

systems.  

The Tuberculosis example with its ABC application is still 

under work and will be an apart paper to be submitted soon 

in the next ISSPM simulation conference. Others diseases are 

under study to make ABC algorithm over DEVSServer a fully 

Epidemic Modeling solution.      
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